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Abstract

Background: The giant synapses of Held play an important role in high-fidelity auditory processing and provide a model
system for synaptic transmission at central synapses. Whether transmission of action potentials can fail at these synapses
has been investigated in recent studies. At the endbulbs of Held in the anteroventral cochlear nucleus (AVCN) a consistent
picture emerged, whereas at the calyx of Held in the medial nucleus of the trapezoid body (MNTB) results on the reliability
of transmission remain inconsistent. In vivo this discrepancy could be due to the difficulty in identifying failures of
transmission.

Methods/Findings: We introduce a novel method for detecting unreliable transmission in vivo. Based on the temporal
relationship between a cells’ waveform and other potentials in the recordings, a statistical test is developed that provides a
balanced decision between the presence and the absence of failures. Its performance is quantified using simulated voltage
recordings and found to exhibit a high level of accuracy. The method was applied to extracellular recordings from the
synapses of Held in vivo. At the calyces of Held failures of transmission were found only rarely. By contrast, at the endbulbs
of Held in the AVCN failures were found under spontaneous, excited, and suppressed conditions. In accordance with
previous studies, failures occurred most abundantly in the suppressed condition, suggesting a role for inhibition.

Conclusions/Significance: Under the investigated activity conditions/anesthesia, transmission seems to remain largely
unimpeded in the MNTB, whereas in the AVCN the occurrence of failures is related to inhibition and could be the basis/
result of computational mechanisms for temporal processing. More generally, our approach provides a formal tool for
studying the reliability of transmission with high statistical accuracy under typical in vivo recording conditions.
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Introduction

Transmission at neuronal synapses is central to neuronal

processing and its investigation has a long history. The small size

of most central synapses renders detailed measurements difficult

using current electrophysiological techniques. Two giant synapses

in the auditory brainstem, the endbulbs of Held and the calyces of

Held, allow better access due to their size. They serve as important

model systems for synaptic transmission at central synapses and

have been extensively studied in in vitro preparations (for review see

[1]). The endbulbs of Held convey information from the auditory

nerve to spherical bushy cells in the anteroventral cochlear nucleus

(AVCN, [2–4]). The calyces of Held are formed by axons of

cochlear nucleus globular bushy cells onto principal cells in the

medial nucleus of the trapezoid body (MNTB, [2,5]). The size of

the presynaptic terminals allows simultaneous recording of the

activity of the presynapses in vitro (chick AVCN homologue: [6],

MNTB: [7–10]) and in vivo (AVCN: [11,12]; MNTB: [13,14]).

In both nuclei, the reliability of signal transmission has been

investigated under different conditions, where failures in transmis-

sion were indicated by the occurrence of presynaptic potentials not

followed by postsynaptic action potentials (APs). In the AVCN, in vivo

and in vitro recordings indicate failures of transmission at the

endbulbs of Held. In vivo auditory stimulation and pharmacological

manipulation provided evidence for failures, suggesting the involve-

ment of inhibitory inputs [11,12]. In vitro, failures occurred during

high frequency electrical stimulation of the excitatory afferents [15].

In contrast, studies in the MNTB yielded conflicting results. In vitro

the signal transmission at the calyx is usually described as fast, secure,

and reliable [16–18], but two recent studies [19,20] indicated low

firing rates and short duration stimulations in typical in vitro studies as

a possible reason for the lack of failures. In vivo signal transmission

failed at high electrical stimulation rates [13] and when auditory

stimuli are presented that reduce the firing rate of MNTB neurons

[14], but another recent study [21] suggested that these failures could

be due to shortcomings in the analysis in [14].
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The shortcomings pertain to the possibility of mistaking signals

from other cells as incidences of failed transmission. This

possibility arises due to the summation of signals in the

extracellular fields and has been known to experimenters for a

long time. It also arises in the task of distinguishing spikes emitted

from different sources (spike-sorting) where single and multiunit

activity need to be distinguished. The refractory period of

neuronal spiking is a basic criterion to distinguish these

alternatives. To detect incidences of failed transmission, a similar

approach can be used. McLaughlin et al. [21] spike-sorted both

the action potentials and failure candidates and compared their

temporal relationship. While this analysis provides qualitatively

similar results as presented here, it does not yield a statistical test.

The presence of noise, however, necessitates such a test in order to

avoid the time-consuming and possibly biased task of visually

classifying recordings or interspike interval histograms as corre-

sponding to failures of transmission or not.

The presently developed test also constructs a specific interspike

interval histogram, but statistically compares the distribution

within one refractory period to the distribution at greater

distances. In this way it becomes robust to noise and a significance

level of the decision can be computed. The properties of the test

are first investigated and adjusted using simulated voltage

recordings. It is then applied to a (comparably) wide range of

recordings from the endbulbs and the calyces of Held. In

summary, we suggest that under the studied activity conditions

(spontaneous, excited, acoustically suppressed activity) and em-

ployed anesthesia (ketamine/xylazine) failures of transmission

occur commonly in the AVCN but only rarely in the MNTB. The

present results have partly been presented at the ARO midwinter

meeting 2008 (Abstract #845).

Materials and Methods

Physiology
Ethics Statement. All animals were handled in strict

accordance with good animal practice as defined by the relevant

regional animal welfare body, and all animal work was approved by

the appropriate committee (Landesdirektion Leipzig, TVV50/06).

Preparation. Forty adult pigmented Mongolian gerbils

(Meriones unguiculatus, aged 2–4 months, weighing 45–70 g) were

used in this study. They were anesthetized with a xylazine-

hydrochloride/ketamine-hydrochloride mixture (xylazine (Rompun,

Bayer Pharmaceuticals) 0.007 mg/g body weight injected

intraperitoneally; ketamine (Ketavet, The Upjohn Company)

0.18 mg/g body weight initial dose by intraperitoneal injection).

Subcutaneous, hourly injections of one third of the initial dose assured

a constant level of anesthesia. Animals were placed in a sound-

attenuated booth (Type 400, Industrial Acoustic Company) on a

vibration-isolated table and fixed in a stereotaxic device using a metal

bolt glued to the bone on bregma of the skull. The nuclei were

approached dorsally with the animal tilted at 27–34 degrees (AVCN)

and 4–10 degrees (MNTB) to the midsagittal plane. Further details of

the preparation are given in [22].

In vivo localization of target nuclei. Stereotaxic

coordinates of the AVCN (n~8) or the MNTB (n~32) were

determined by online analysis of acoustically evoked multiunit

activity using low impedance micropipettes (v5 MV). Locating

the AVCN was facilitated by its clear tonotopic (spatial location of

neurons varies systematically with preferred stimulus frequency)

organization and the fact that units are only driven by stimuli

presented to the ear on the same side. Differentiation of the

MNTB from other nuclei within the superior olivary complex was

facilitated by the fact that MNTB units increase their firing rate

exclusively in response to stimuli presented to the ear on the

opposite side. In 18 animals recording sites were additionally

verified histologically using HRP or Flouro-Gold following the

same procedures as in [22].

Single-unit recording. Extracellular voltage recordings were

performed with high-impedance glass micropipettes (8–30 MV,

GB150TF-10, Science Products) filled with 3 M KCl. These

recordings are similar to loose patch recordings (on-cell

microelectrode recordings without a resistive seal in the GV
range and no breach of the cell membrane) due to the proximity of

the micropipette tip to the cellular surface. In contrast to local field

potential recordings, where the recording electrode is further from

the cell membrane, the waveform properties correspond here to a

bandpass filtered version of the transmembrane voltage (own

unpublished observation). The voltage signal was preamplified

(Neuroprobe 1600, A-M Systems, Carlsborg), band pass filtered

(0.3–7 kHz), and further amplified (PC1, TDT, Alachua) to match

the input voltage range of the A/D converter (RP2.1, TDT).

Voltage traces were digitized at a sampling rate of 97.7 kHz and

stored for subsequent analysis.

Single units of the desired kind were identified by the

characteristic shape of their waveform. Due to the extraordinary

size of the synapses of Held, spike transmission at these junctions

produces complex waveforms (CWs) which distinguish them from

other cell types and fibers in these nuclei. Only units exhibiting

such CWs were included in the analysis. In the AVCN, Pfeiffer

[11] was the first to report the typical occurrence of a CW in

extracellular recordings (Figure 1A). He separated it into three

components termed P, A, and B. P and A are positive potentials

with a relatively constant delay of 0.5 ms between them. B’s shape

concords with a typical extracellular action potential waveform

and follows A with a considerably smaller and more variable delay

(0–0.2 ms). Based on the temporal relationships, Pfeiffer concluded

that P is of presynaptic origin, whereas A and B are postsynaptic

events. In the MNTB, Guinan et al. [23] found similar CWs in

extracellular recordings, consisting of two components separated

by &0.5 ms (Figure 1B). A number of studies [13,24,25] showed

convincingly that the first component (C1) can be attributed to the

presynaptic AP and the second component (C2) to a postsynaptic

component, presumably the AP.

The interpretation of the present results will depend on the

origin of the components of the CW. Especially in the AVCN this

origin is not fully understood. Possible origins for the individual

components include the presynaptic AP, the postsynaptic EPSP,

the postsynaptic axon hillock AP and the postsynaptic, retrograde

AP [11]. In the following we have attempted to report the results

without favoring either interpretation.

The signal-to-noise ratio (SNR) of potentials was quantified via

the peak signal-to-noise ratio, defined as SNR Pð Þ~ max Pj jð Þ
std Nð Þ ,

where P denotes a potential and N the baseline noise.

Stimulus presentation
Reliability of transmission was investigated under three response

conditions: (1) spontaneous, (2) excited, and (3) suppressed activity.

For the latter two, specific acoustic stimuli were presented to the

animal which achieved the desired activity level for a given cell (see

below). During condition (1) no acoustic stimulus was presented.

Spontaneous activity was recorded for 30 s, in units with low

spontaneous activity for up to 150 s. For condition (2), the

combinations of level and frequency leading to significant

increases in firing rate were selected from the (stimulus frequency

- stimulus intensity) tuning recordings (next paragraph). The

length of these recordings varied with the response area of each

unit, amounting to 40 s on average. In condition (3), either a single

Reliability of Transmission
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or a two-tone paradigm (two tonal stimuli presented together) was

chosen depending on the spontaneous rate of the unit (next

paragraph).

The excitatory response area of a neuron was measured by

monaural presentation of short pure tones (100 ms, 200 ms stimulus

period) in pre-defined intensity and frequency arrays. Combinations

of 20 frequencies (logarithmic spacing) and 10 intensity levels (linear

spacing in decibel) were presented in a randomized order. In

spontaneously active units this single tone paradigm sufficed to

determine significant reductions of (spontaneous) firing rate

(Wilcoxon signed ranks test). In spontaneously inactive units a

two-tone paradigm was used to detect frequency/intensity combi-

nations evoking reductions in response rate relative to the response

rate of a single excitatory tone (first, excitatory pure tone: at the

characteristic frequency (CF, the tone frequency a unit is most

sensitive at) with a duration of 100 ms; second pure tone: varying

frequency/intensity combinations with a duration of 40 ms starting

at a 30 ms delay with respect to the first tone within an overall

stimulus period of 200 ms). All tones were modified multiplicatively

at their start and end with cosine shaped rise/fall ramps (5 ms each).

After the rate-reducing frequency/intensity combinations were

located, they were resampled with longer stimuli to increase the

spike count for this condition (CF tone: 500 ms duration, additional

pure tone: 450 ms duration, 50 ms delayed to the CF tone, 700 ms

stimulus period, providing a recording time of up to 75 s).

Stimulus waveforms were generated at a sampling rate of

97.7 kHz on a standard PC using custom written Matlab 7 (The

Mathworks, Natick) software. Stimuli were then transferred to a

real-time processor (RP2.1, Tucker Davis Technologies), D/A

converted and further sent to two custom made earphones

(acoustic transducer: DT 770 pro, Beyerdynamic). These were

fitted with plastic tubes (35 mm length, 5 mm diameter) which

were inserted into the outer ear canal at a distance of *4 mm to

the tympanic membrane. Acoustic calibration was performed by

convolving the stimulus with the earphone’s inverse impulse

response prior to stimulus presentation. The calibration was

verified to lie within +5 dB of the target amplitude in the range of

0.5 to 48 kHz before the experiment.

Data analysis
The goal of the following analysis is to decide whether an

MNTB/AVCN recording contains failures of spike transmission

(illustrated in Figure 1C & D). The following decision sequence

needs to be checked:

1. Do voltage potentials exist, which qualify as remnants of a

transmission event, e.g. isolated presynaptic potentials?

a) If not, we can conclude that transmission is safe

(based on the underlying assumptions).

b) If such potentials are present address next question:

2. Do they originate from a source which is connected to the

CW’s source?

This is tested by determining whether the potentials obey

the refractory period with respect to the CWs.

a) If this is the case, it is likely that these potentials

originate from the presynaptic ending (if certain shape

criteria match).

b) If the refractory period is not obeyed, the potentials

have to originate from a different source, e.g.

neighboring cells.

Figure 1. Complex Waveforms (CW) in AVCN and MNTB and overview of the general task. (A) In the AVCN the CW usually has three
components, P, A, and B [11]. Aside from this CW, also the combination of only P and A occurs, constituting candidates of failed transmission. Since A
is usually larger than P, the height of A was used for triggering the P-A combinations. Hence, in the AVCN A is the trigger potential (TP). (B) In the
MNTB the CW has two components, C1 and C2 [13]. Here, the height of the presynaptic C1 serves to detect failure candidates, i.e. constitutes the TP
here. (C) To check the reliability of transmission, three cases need to be distinguished (here illustrated without noise for a mean CW from an MNTB
unit): (top) If the CW has a strong C1 component, but no potentials of a similar height (iPs) occur in the remaining trace, then the recording is from a
single unit and there is no indication for failures. (middle) If iPs occur, but some of them are located too close (less than the refractory period, RP) to
their counterpart (C1) in the CW, then the recording is from multiple units and the iPs do not stem from failures. (bottom) If iPs occur and they all
respect the RP, then they likely correspond to failures (assuming other correlation factors, e.g. phase locking, are ruled out). (D) Under realistic
recording conditions, iPs could be due to failures (only C1), other cells, or just noise fluctuations. Classical spike-sorting cannot reliably distinguish
between these cases. If an iP is detected close to a C1, failures cannot necessarily be excluded since this could have been a noise fluctuation. To
decide whether these violations are due to noise, a statistical test is required that compares the distribution of iPs at different distances from C1. In
the AVCN, a corresponding argument would replace C1 with the P-A waveform.
doi:10.1371/journal.pone.0007014.g001
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Recordings are divided into two classes, based on where they fall

along these conditions: Failures of transmission are unlikely if either

no candidate potentials exist or if the candidates stem from a

different source. Failures of transmission are likely if the potentials

stem from the same source. We decided to use a more cautious

terminology. Rather than naming these classes No Failures and

Failures, we chose the terminology no dependent potentials and dependent

potentials, which will be abbreviated No Dep and Dep, respectively.

This terminology reflects the basic fact that an analysis based on the

waveforms can only determine whether the CWs and the candidate

potentials are statistically independent or dependent. Their origin

needs to be addressed later, based on additional analytical and

biological considerations, which we postpone to the discussion.

Next, we describe the details of what constitutes a candidate

potential (termed isolated potentials, iPs), how these were

collected, and how statistical dependence between them and the

CWs was tested. This analysis, termed Independence Assessment

of Potentials (IAP), can be divided into four steps:

I. Detection of complex waveforms (Figure 2I): All relevant

potentials were collected by triggering the voltage trace at

a visually determined, conservative level, i.e. to guarantee

including all CWs. The waveforms of the triggered

potentials were collected in the interval from 2 ms preceding

to 2.5 ms following the trigger. The resulting cutouts were

spike-sorted (separated into groups of similar shape) by first

performing a principal component analysis (PCA) followed

by a cluster-analysis (single linkage hierarchical clustering)

with 4 or 5 clusters on the eigendimensions corresponding to

the three largest eigenvalues. This method cleanly separates

the CWs from other potentials of different shape or

amplitude. Recordings with drift in the signal amplitude

were excluded from analysis.

II. Detection of trigger potential (Figure 2II): As described above, the

recorded CWs contain additional components preceding the

main postsynaptic component (AVCN: B, MNTB: C2).

These were detected automatically within a window of 1 ms

before the maximum of the main postsynaptic component

by determining the local maxima in this range of the average

CW. Significance of local maxima was assessed by testing

(Wilcoxon signed ranks) the distribution of voltage values at

the peak of the component against the distribution of the

baseline fluctuations. If more than one local maximum was

detected in this range, the largest was chosen for further

analysis. In the AVCN this maximum corresponded to

component A (see Figure 1A). In the MNTB, it correspond-

ed to component C1 (see Figure 1B). In the case of signal

transmission failures, iPs are likely to resemble the first

component(s) of the CW in terms of polarity and height

(AVCN: P and A, MNTB: C1). Therefore this potential, i.e.

its height, served to trigger iPs in the voltage trace. For

consistency across MNTB and AVCN data this potential is

termed trigger potential in the following (TP).

III. Detection of isolated potentials (Figure 2III): Before triggering iPs,

the average CW was subtracted at each of the CW locations.

This allowed detection of iPs that overlap with the initial and

final periods of the CWs. Subtraction artifacts typically

remained in the steep, central phase of the CW (see also

Results on simulation data). Note, that due to these

subtraction artifacts iPs overlapping with the central portion

of the CW could not be detected (if present).

If the number of triggered iPs was less than 1% of the number of

CWs, the recording was classified as No Dep since then the iPs

either represent spurious voltage fluctuations, or if they were

transmission failures, transmission reliability would be at §99%,

which can essentially be considered safe transmission.

If more iPs were triggered, they were collected in a histogram

centered on the TP which gives an estimate of the temporal

distribution of the iPs relative to the TP. The entries in the

histogram are rescaled by NCWDtð Þ{1
to represent the rate of iPs

(in Hz) for the bin width (Dt~10 ms) averaged over the number of

CWs (NCW) for a given recording.

IV. Statistical comparison of AP preceding periods (Figure 2IV): Based

on this histogram and the well known biological property of a

refractory period [26] on the order of 0.8–1.5 ms (depending

on cell type and individual unit), it can be judged whether the

iPs and the TP of the CWs stem from the same or different

neuronal sources.

If they originate from different neuronal sources and are not

phase locked to the stimulus (see Discussion), then the histogram

should be flat, i.e. the iPs occur temporally independent with

respect to the TPs of the CWs. In this case the iPs are termed

independent.

If they stem from the same neuronal source, then the probability

of finding iPs relative to the TPs of the CWs should ideally

approach the shape of the inter-spike interval (ISI) histogram of

the CWs. In this case the iPs are termed dependent (with respect to

the TP of the CWs).

In the latter case the histogram will be lower within one

refractory period of the TP (critical window: CritWin) than further

from the TP (reference window: RefWin). Since the histogram will

not always be densely sampled, a statistical test is needed that

judges whether the rate of iPs in CritWin RiP,CritWin is significantly

reduced in comparison to the corresponding rate in RefWin

RiP,RefWin. Further, this test should be balanced, i.e. not favor one

of the alternatives. We also checked that the occurrence of iPs was

independent of distance to the CWs, which could have influenced

the histograms composition (see Results).

To account for sparsely sampled histograms, we divided

RefWin into subwindows Wk of the same length as CritWin

(approx. 1 refractory period) and compared their median iP rates

RiP,RefWin,k to RiP,CritWin using the Wilcoxon rank sum test, each

resulting in a probability Pk of equal medians (Pk was set to 1, if

RiP,RefWin,kƒRiP,CritWin, since we are only interested in rate

reductions in CritWin). The final test statistic Sindep was then

defined as the average of the individual probabilities for the Wk

Sindep :~
1

#Wk

X#Wk

k~1

Pk :

Hence, Sindep not only compares RiP,CritWin to the average

of RiP,RefWin but also takes the distribution over bins in the

histogram into account. This is of importance if the lack of iPs in

CritWin is paralleled by periods of similar length in RefWin

without iPs, i.e. RiP,CritWin~0vRiP,RefWin and a number of Wk

with RiP,RefWin,k~0. In this case, the relevance of a lack of iPs in

CritWin is relativated by the lack of iPs in the Wk.

While Sindep behaves similar to a probability, indicating whether

to maintain the 0-hypothesis of independent iPs/no rate reduction,

it is not a proper probability. Even if it were a probability, we

would need to choose a significance level at which to reject the

0-hypothesis. Rather than rejecting one alternative, we determined

a decision point S� which minimizes the probability of an

incorrect decision for the two hypotheses, i.e.

Reliability of Transmission
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H~
0 independentð Þ if SindepwS�

1 dependentð Þ if SindepvS�

�

with S� : ~Sindep[ 0,1½ � such that bSindep
H~1ð Þ~bSindep

H~0ð Þ,
where bSindep

H~ið Þ denotes the false rejection (Type II) error

given that the hypothesis is true (1) or false (0) for the decision

point S (see Figure 3A). The significance level of the test is then

automatically upper bounded by bS�. To determine S� it was

necessary to estimate the distributions of Sindep for dependent and

independent iPs based on simulated voltage recordings (details are

provided below).

In essence, this method implements a test for potentials

approaching each other closely in time, yet with the advantage

that this method also works under noisy conditions. If noise

reaches the trigger level, the histogram baseline is just shifted but

the difference between the number of triggers within CritWin and

RefWin is preserved. Although this reduces the power of the test, it

still allows a distinction between dependent and independent iPs.

Further it provides a statistical test to the researcher in place of

visual judgement.

Testing and balancing the IAP
Simulated voltage recordings. The ability of the IAP to

distinguish whether potentials stem from dependent or

independent sources was validated by applying it to a range of

simulated voltage traces (see Results). Here the dependence or

independence of the potentials and other parameters are known

and can be controlled. Briefly, the simulated voltage traces were

generated by drawing spike times for a given firing rate, assigning

an iP or a CW to each spike time, adding white Gaussian noise,

and filtering the resulting signal similarly to the experimental

apparatus. More precisely, for each stimulus condition firing rate

modulations mimicking neuronal responses were generated. In the

case of spontaneous firing the firing rate was assumed to be

constant. In the case of the tuning stimuli we generated firing rate

modulations by running a model of auditory nerve firing [27] on

the experimentally used acoustic stimuli. Using these firing rates,

either one (dependent) or two (independent) spike trains were

drawn from an inhomogeneous Poisson process. Within these

spike trains we deleted all spikes violating an absolute refractory

period of 0.8 ms. In the first case the spikes in the spike train were

randomly divided into iP and CW groups. In the second case one

of the spike trains was assigned to the iP, the other to the CW

group. Then the appropriate waveforms were positioned at the

spike times from each group and summed. White Gaussian noise

was added to the trace and the same bandpass filtering (0.3–

7 kHz) as for the experimental data was applied to the trace. Even

to the skilled eye the simulated recordings are hardly

distinguishable from the real data, and thus pose a good test for

the IAP method.

Choosing a balanced decision level. The test should

distinguish between the presence (Dep) and the absence of dependent

iPs (No Dep). This task differs from the classical question of whether a

0-hypothesis holds, where one specifies an acceptable level of correct

classification only for the 0-hypothesis. Presently, the goal is to weigh

the two hypotheses equally and choose a decision criterion that

maximizes the overall percentage of correct classification.

This goal requires to minimize the Type II error of the test jointly

for both hypotheses, i.e. maximize the power for both hypotheses.

The power of a statistical test is usually defined as 1-b, where b is the

probability of accepting one hypothesis if it is actually false

(classically the 0-hypothesis). In order to assess the power, the

Figure 2. Schematic of the Independence Analysis of Potentials
(IAP). We subjected three data sets to the IAP: voltage recordings from
AVCN, MNTB, and simulations. I. First, candidate waveforms were
collected by triggering at a visually chosen threshold (A, red) and then
(B) aligned at their minimum. (C) Next, these waveforms were spike
sorted using principal component and cluster analysis. (D) The cluster
containing the complex waveforms (CWs, blue) was selected, thus
excluding waveforms of different shape (black). II. The height and
relative position of the trigger potential (TP = prepotential in MNTB; =
A-component in AVCN) were detected in the average CW. (blue: mean;
gray: 61 SD) III. Isolated potentials (iPs, small vertical bars in upper
graph) were triggered at the TPs height (red horizontal line) and
collected into a histogram relative to the TP of the CW. Each box color
corresponds to an iP preceding a given spike. Different colors indicate
which CW they correspond to (compare to upper graph, box size does
not indicate actual bin-size). IV. Whether the iPs derive from the CW’s
source or from a different source is assessed by comparing the density
of triggered iPs in the period immediately preceding the CW (one
refractory period, CritWin) with the period preceding CritWin (1–5 ms,
RefWin). If the iP rate in CritWin was significantly smaller than in RefWin,
the recording was classified as containing dependent iPs (Dep),
otherwise to not contain dependent iPs (No Dep). This decision was
based on the test statistic Sindep and the decision point S� (for details
see Methods).
doi:10.1371/journal.pone.0007014.g002
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densities of the test statistic Sindep for each hypothesis, the so-called

likelihoods, need to be known. We approximated the likelihoods

L SindepjDep
� �

(Figure 3A, purple) and L SindepjNo Dep
� �

(Figure 3A, red) by subjecting simulated spike-trains of known

properties to the IAP. The b-errors for the two alternatives

(Figure 3A, Dep blue and No Dep orange) are minimized to the same

level by choosing the point where the two functions agree. This

point corresponds to the desired balanced decision point S�. While

this criterion differs from maximum likelihood, the results of the

latter would have been similar since the likelihoods were always

unimodal with similar tail behavior.

The considered densities depend on certain properties of the

spike-train, most importantly the number of iPs in RefWin and

CritWin (NiP,wins), SNRTP, and the refractory period. Hence, also

S� depends on these parameters. In the following, we address the

dependence on SNRTP and NiP,wins, whereas for the refractory

period a conservative lower limit is chosen (0.8 ms). In recordings

with longer refractory periods the required minimal NiP,wins would

actually be lower than indicated in the following.

From the averages of the cumulative densities (Figure 3B) it is

apparent that the separation of the two hypotheses (ÊE P Depð Þ½ �, blue

and ÊE P No Depð Þ½ �, orange) depends strongly on both SNRTP and

NiP,wins. The one-sided 95% confidence bounds for both distribu-

tions, i.e. for the Dep case the upper and for the No Dep case the lower

confidence bound, are shown in Figure 3C. The Dep (Figure 3C,

blue) bound generally lies below the No Dep (Figure 3C, orange)

bound if NiP,wins§20 and SNRTP§3. Hence, for the desired

power, here 0.95, these values corresponded to the minimally

required NiP,wins and SNRTP. If the maximal power was lower than

a desired level (0.95), we considered recordings not suited for IAP

(unless iPs were scarce throughout the entire recording, see section

Analysis of No Dep cases). If a given recording accorded to these

requirements, it was classified as Dep if the IAP result lay below the

S� surface (yellow) and as No Dep otherwise.

Results

Recordings from 55 spherical bushy cells in the AVCN and 177

principal cells of the MNTB were analyzed. If for a given unit

multiple recordings existed per response condition these were

concatenated unless the signal waveform or the SNR had changed

in between. In the following, every unit enters into the analysis

with only one (possibly concatenated) recording for each condition

(if available for a given unit).

Distribution of signal to noise ratios and firing rates
A statistically sound analysis of signal transmission relies on

trigger potentials (TP) well above the noise level and a sufficient

number of complex waveforms (CW). Extracellular recordings

from both nuclei studied exhibited a wide range of signal to noise

ratios of the TP (SNRTP) and firing rates (Figure 4). Recordings

were further analyzed if the SNRTP exceeded 3 and more than

200 CWs could be collected. For the AVCN 130 (53 spontaneous,

31 excitatory, 46 inhibitory/suppressive) and for the MNTB 241

(89 spontaneous, 65 excitatory, 87 inhibitory/suppressive) record-

ings passed these criteria. IAP analysis could be applied at a 5%

error level for 121 AVCN (48 spontaneous, 30 excitatory, 43

inhibitory/suppressive) and for 189 MNTB (66 spontaneous, 57

excitatory, 66 inhibitory/suppressive) recordings.

Representative examples of IAP analysis
The IAP provides a statistical tool to distinguish whether

different potentials were emitted by a single neuronal source or

multiple independent neuronal sources. If a single source emitted

the potentials, their temporal relationship would be influenced by

the refractory period. If they were emitted by multiple,

independent sources, their temporal relationship should be

unrestricted. Analyzing this relationship in terms of the rate of

iPs as a function of interpotential distance, rather than a distance

criterion for pairs of potentials, allows us to extend the analysis to

conditions of noise and comparably low SNRTP. These conditions

are common for extracellular recordings in vivo and have to be

taken into account if synaptic transmission is studied.

Simulation. The following representative results for a Dep

and a No Dep simulation serve to provide intuition for the

subsequent interpretation of IAP results of experimental data

where the exact dependence between CWs and iPs is unknown

(Figure 5A, B). We created simulated data sets closely mimicking

Figure 3. IAP decision level S�. (A) S� is determined by the intersection of the b-error distributions for the two cases Dep (blue, corresponding to
failures) and No Dep (orange, corresponding to two units) which were generated from simulated voltage recordings. (B) Average Sindep assigned by
IAP to simulations with matched parameters (colors as above). On average, IAP separates Dep and No Dep for all values of the total number of iPs in
the RefWin and CritWin (NiP,wins) and the signal-to-noise ratio of the TP (SNRTP). (C) One-sided 5% b-error surfaces for Dep and No Dep. The curve of
intersection between these surfaces marks the parameter combinations where the common b-error drops below 5%, the criterion for including
recordings. If Sindep of a given recording lies below the surface of equal b-errors (yellow), it is classified as Dep, otherwise as No Dep.
doi:10.1371/journal.pone.0007014.g003
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voltage traces of AVCN/MNTB units. In these data sets, all

parameters can be controlled, especially the dependence between

CWs and iPs. In both examples, the CW and the iP firing rates

were constant at 50 Hz and periods of 100 s were simulated.

For the Dep simulation the iP histogram shows the expected

decrease in iP rate in CritWin (Figure 5A2). Qualitatively, the iP

rate follows the ISI histogram of the CWs which is a consequence

of both potentials originating from the same source. For the No Dep

simulation, the iP rate remains unchanged in CritWin (Figure 5B2).

The IAP significance assessment correctly classified both examples

as Dep and No Dep, respectively.

As briefly noted in Methods, the subtraction of the mean CW

from each CW leaves subtraction artifacts in the steepest phases of

the CW, often including the fast positive and negative portions of

the postsynaptic AP (see Figure 5A2/B2). Since these artifacts

were also observed in Dep simulation data, i.e. where iPs are

known not to overlap with CWs, these phases of the CW were not

included in the IAP analysis. Note, if perfect subtraction had been

possible, CritWin could have been chosen symmetrical around the

TP, thus enlarging the statistical basis.

AVCN. Both Dep and No Dep results were frequently obtained

for recordings of AVCN units. A recording of spontaneous activity

leading to a Dep result is depicted in Figure 5C (CF 1.3 kHz). The

iP rate decreased strongly in CritWin, characteristic for potentials

from a single source separated by a refractory period. As in the

simulated data, the iP rate preceding the TP qualitatively follows

the ISI histogram of the CWs. As shown in this example, Dep

results were often accompanied by asymmetrically distributed

(with respect to the TP) iP rates with higher rates following the

TP/CW than preceding it. In contrast, the recording depicted in

Figure 5D (CF 1.29 kHz) neither shows a decrease of iP rate in

CritWin nor an asymmetric distribution of the iP rate. Although

the difference between the two recordings is obvious from their iP

histograms, it is hardly noticeable from their voltage traces.

MNTB. In the MNTB, almost all recordings were classified as

No Dep, mostly because of the absence of iPs throughout the whole

recording. An example of this kind, in this case a recording of

spontaneous activity, is shown in Figure 5E (CF 11.4 kHz).

Isolated potentials are triggered neither in CritWin nor in RefWin.

Most of the recordings that contained iPs resulted in flat iP rate

histograms, i.e. no significant reduction of the iP rate in CritWin.

Results for such a recording of spontaneous activity are shown in

Figure 5F (CF 3.9 kHz). As in the No Dep case of the AVCN, no

asymmetry of iP rates is observed. In Figure 5G one of the few

MNTB recordings is shown (CF 16.0 kHz) which met the criteria

for Dep classification. While this demonstrates that IAP can detect

(putative) failures in the MNTB as well, the interpretation of this

particular case is involved. In contrast to the great majority this

unit exhibited an unusually high variability in the delay from C1 to

C2 (0.5 ms–2 ms, see superimposed waveforms in Figure 5G1

right), i.e. probably between the presynaptic and the postsynaptic

AP. This variability might be an indication of somehow modified

transmission, e.g. through modified cellular dynamics on the

postsynaptic side or modified transmission at the synapse. Also,

injury by the microelectrode cannot be excluded. Since this

variability only occurred in two cases, we could not develop a good

interpretation for these, probably not representative recordings.

Voltage traces, average waveforms, and iP rate histograms

showed a similar behavior under excitatory and inhibitory/

suppressed response conditions. We verified that the IAP results

remained accurate under conditions of variable response rates

(data not shown).

IAP population analysis
Across all recording conditions, dependent iPs were frequently

found in the AVCN, but rather rarely in the MNTB. In the case of

spontaneous activity, 56% (27/48) of the AVCN recordings

yielded a Dep result (Figure 6A). For the MNTB, v5% (3/66) of

the recordings were classified as Dep.

In the excitatory response condition, the percentages of the Dep

result were reduced. In the AVCN, the percentage dropped to 50%

(15/30), in the MNTB no recordings classified as Dep remained

(Figure 6B). These reductions were likely to be caused by a significant

increase (+20%) in standard deviation of the baseline voltage

fluctuations (pv0:01, Wilcoxon signed rank test for matched

samples, n~28), probably due to the activation of neighboring cells.

In the inhibitory/suppressive response condition (Figure 6C),

dependent iPs are expected to occur as failures of signal

transmission as demonstrated in previous studies (pharmacologi-

cally in the AVCN [12] and by means of distinguishing pre- and

postsynaptic potentials in the MNTB [14]). Indeed, in the AVCN

the IAP yielded an increased percentage of Dep recordings (79%,

Figure 4. Distribution of signal to noise ratios of the TP (SNRTP) and spontaneous firing rates. (A) The distributions of SNRTP in the AVCN
and MNTB are quite similar. SNR is defined as the size of a potential divided by the standard deviation of the noise (see Methods). (B) Spontaneous
firing rates between the two nuclei differ in distribution with AVCN rates concentrated in the range 40–100 Hz. MNTB firing rates reach similarly high
values but were concentrated below 40 Hz. 35% of MNTB firing rates exceed 30 Hz.
doi:10.1371/journal.pone.0007014.g004
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34/43). In contrast, no MNTB recording was classified as Dep.

Interestingly, in the AVCN the standard deviation of the baseline

voltage during this response condition was not significantly

increased (+2%, pv0:91, Wilcoxon signed rank test for matched

samples, n~26) compared to the spontaneous condition. Note,

that the different proportions of single and two-tone stimulations

Figure 5. Examples of IAP for simulated, AVCN, and MNTB recordings of spontaneous activity. The left column shows voltage traces
(black) and trigger levels for complex (red) and candidate waveforms (orange) for each unit. The corresponding average complex waveform (black)
and its pointwise standard deviation (gray) is depicted in the middle column. The trigger potential (TP) (MNTB: presynaptic spike, AVCN: postsynaptic
potential, probably the EPSC) is also indicated. The right column shows the histograms (orange) generated by triggering at the height of the TP (after
aligned subtraction of the average complex waveform). Further the interspike interval histograms of the complex waveforms are shown, mainly for
visual comparison. For the simulated data (A2, B2) the histograms reflect the failure containing condition by a decrease in CritWin (A2), and
conversely the lack of decrease in the two unit condition (B2). Guided by the results from the known datasets, the AVCN data (C2, D2) can be
interpreted: A substantial number of cells exhibited histograms similar to the cell in C2, suggesting failures of transmission, while the remaining cells
showed histograms similar to the cell in D2. If a decrease occurred, its timing was predicted by the ISI histogram (blue). In the MNTB (E2, F2, G2) the
most frequent finding was the absence of iP at the TPs height, leading to an empty histogram as in E2. Most of the units with iPs of sufficient height,
exhibited no decrease of the histogram in CritWin, as in F2. In a small fraction of recordings a decrease was observed, yet, this could be accompanied
by unusually high variability in timing from the presynaptic to the postsynaptic side as in G2 (see individual trace in middle column). IAP classified the
recordings in A,B, and G as Dep and the remaining as no Dep.
doi:10.1371/journal.pone.0007014.g005
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between AVCN and MNTB are a consequence of the lower

spontaneous rates in MNTB units (Figure 4), more often requiring

the use of a two-tone paradigm. Results from low frequency and

high frequency inhibitory fields have been pooled in the histogram

to avoid crowding the figure (see Figure 7B for separated low

frequency and high frequency results).

The classification of the AVCN units across recording conditions

was quite consistent: All units that were classified as Dep in the

spontaneous and/or the excitatory condition were also classified as Dep

in their suppressive/inhibitory condition. Between the spontaneous

and the excitatory condition the agreement was 87% for the Dep cases.

Proportion of iPs with respect to all potentials
Whether a recording is classified as Dep or No Dep does not

determine the abundance of iPs. In the Dep cases the abundance of

iPs indicates the failure rate of the synapse if the iPs actually

correspond to failures of transmission (see Discussion). More

precisely, the failure rate would be estimated by the proportion of

iPs with respect to the total number of iPs and CWs. Assuming

that some of the iPs are due to noise of other cells, this proportion

provides an upper bound on the failure rate. For comparison, we

also provide this proportion for the No Dep cases, although here, it

cannot be interpreted as a failure rate. Since the data of the three

(spontaneous) MNTB cases classified as Dep (iP proportion: 0.21,

0.41, 0.57) do not provide sufficient information for a histogram,

only the AVCN data are considered (Figure 6).

For the recordings of spontaneous activity, the distributions of iP

proportion for Dep and No Dep differ significantly in their medians

(0.24 SD 0.17, 0.11 SD 0.23, Wilcoxon rank sum test for equal

medians, pv0:001, Figure 6D). In the No Dep recordings the values

are concentrated below 0.1, whereas in the Dep recordings they are

broadly distributed up to 0.7. For the excitatory condition both

distributions shift to higher values (Figure 6E). For the No Dep

recordings the mean increased significantly (pv0:001), probably

reflecting the activation of neighboring cells. The shapes and means

of the distributions are very similar, i.e. no significant difference

exists between them (p~0:77). For the inhibitory/suppressive

condition the Dep distribution broadens/shifts significantly to a

higher mean value (pv0:03), whereas the No Dep distribution

retains a similar mean (p~0:84, Figure 6F). Although the mean of

Figure 6. IAP results and proportion of iPs for AVCN and MNTB for each recording condition. (A) For spontaneous activity the majority
(56%) of the AVCN, but less than 5% of the MNTB recordings contained dependent iPs. (B) In the excitatory response condition the percentage of
AVCN Dep recordings decreased to &50%. In the MNTB no Dep recordings were found. (C) In the inhibitory/suppressive response condition the
percentage of AVCN Dep recordings increased to 80%, whereas again none of the MNTB recordings was classified as Dep. For AVCN Dep recordings
the proportion of iPs with respect to the total number of (presynaptic) events estimates the insecurity of transmission (if iPs correspond to failures of
transmission). (D) During spontaneous activity No Dep had a significantly smaller iP proportion than Dep, consistent with failures. (E) In the excitatory
condition the iP proportion does not differ significantly between the No Dep and the Dep cases, although they both increase compared to the
spontaneous condition. (F) In the inh./sup. condition the distribution of iP proportion for the Dep cases increases significantly compared to both
previous conditions, whereas the corresponding distribution for the No Dep cases stays similar to the excitatory condition.
doi:10.1371/journal.pone.0007014.g006
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Dep (0.48 SD 0.19) exceeds the No Dep (0.36 SD 0.24) mean, the

variability seen in the data prevents a statement of significant

difference in mean. Generally, the iP proportion is quite variable for

both Dep and No Dep with the exception of spontaneous No Dep

recordings. This is consistent with previous findings [12].

It might not be surprising that the iP proportion for the No Dep

cases is also high in the excited and suppressive/inhibitory

conditions, since neighboring cells are likely to have similar

activity levels under the same stimulation.

IAP results are not correlated with CF
The contrasting IAP results between AVCN and MNTB units

could be related to their different distributions of CF. The CFs of

AVCN units ranged from 0.3 to 3.3 kHz, CFs of MNTB units

from 0.5 to 45 kHz (Figure 7A). In the frequency range up to

approx. 2 kHz, both AVCN and MNTB units phase-lock to the

sinusoidal stimulus [28–30]. If the iPs also phase-lock, TPs and iPs

would tend to be separated by an interval corresponding to the

frequency of phase-locking. Using the IAP could result in the

interval being interpreted as the refractory period, thus classifying

the iPs as Dep even if they actually originate from different sources.

Although this classification is correct in the sense that both

potentials depend on the stimulus, it would invalidate the study of

signal transmission. Therefore, we addressed this concern by

comparing the CFs of Dep and No Dep recordings separately for

each condition (Figure 7B). In the AVCN, no significant

differences in mean CF between Dep and No Dep results were

found (Wilcoxon rank sum test for two groups, spontaneous

pv0:47; excitatory pv0:27; inhibitory/suppressive: tuning LF

pv0:58, tuning HF pv0:54, only Dep cases for two-tone tuning).

In the MNTB, the distribution of CFs has most of its weight above

3.5 kHz (Figure 7A) corresponding to the distribution of CFs in

the MNTB across species [31,32]. Assuming that phase-locking

occurs up to approx. 2.5 kHz in the afferents of the MNTB [29],

only one of the Dep cases from spontaneous recordings had a CF in

the relevant range (CFs: 2.4, 4.0, and 16.0 kHz).

Longer stimuli do not lead to more Dep cases in the
MNTB

In the excitatory condition a given unit usually emits thousands

of CWs (mean: 2600 SD 1378) within approximately 60 s

(depending on the number of repetitions), leading to an average

firing rate of 80 Hz (SD 37 Hz). Due to the nature of auditory

tuning curves in the MNTB, the response consists of episodes of

very high firing rate (up to 500 Hz over 100 ms) alternating with

periods of little activity.

To test whether failures (and consequently Dep cases) occur at

the calyx of Held only for longer periods of more intense activity,

another excitatory response condition was tested. A broadband,

noise-like stimulus (reaching from two octaves below CF to one

octave above CF) was presented for 100 s almost continuously

(100 ms pause every 5 s due to technical limitations). The loudness

of the noise was adjusted to obtain a high firing rate (132 SD

38 Hz). This paradigm was employed in 22 cells with a high

SNRTPw3. However, the results qualitatively agree with the other

conditions in the MNTB. Two units were classified as Dep,

suggesting only a small increase in Dep cases due to the prolonged,

higher frequency discharge.

Windows of analysis provide representative iP counts
The judgement of the presence of dependent iPs with the IAP is

based only on the iPs that fall into the windows preceding the APs

(RefWin/CritWin). It is hence important to assess, whether the

collection of iPs in the windows is representative for the iPs in the

whole recording.

In both AVCN and MNTB, a considerable percentage of the

recordings contained only few or no iPs in RefWin/CritWin, most

prominent in spontaneous recordings from the MNTB, where

approx. 70% had less than 10 iPs in RefWin/CritWin corre-

sponding to low iP rates in the windows (Figure 8A1–A3). Are

these low iP rates in agreement with the iP rates observed in the

whole recording, or do iPs dominantly occur at a greater temporal

distance to the APs? In this comparison only the iP rate in RefWin

can be used, as the iP rate in CritWin would be reduced by the

refractory period between the TPs and the dependent iPs, if

present.

In all response conditions (spontaneous, excitatory, inhibitory/

suppressive) the rate of iPs in RefWin was a good predictor of the

total iP rate (Figure 8B1–3, AVCN: blue, MNTB: red, No Dep:

circles, Dep: pluses). This is indicated by the high r values together

with slopes close to 1. In some cases the iP rate in RefWin even

exceeded the overall iP rate, indicated by slopes greater than 1.

Figure 7. Dep recordings are not correlated with CF. (A) The distributions of CF for both nuclei differ: AVCN units (blue) are concentrated in the
low frequency range reaching up to 3 kHz. The MNTB CFs (red) range over the whole spectrum, yet typically exceeding 3 kHz. The overlap of the
MNTB with the AVCN range amounts to 16%. (B) Distribution of Dep and No Dep recordings in the AVCN with respect to CF for all recording
conditions (see legend). If the classification as Dep was correlated with lower CFs (where stronger phase-locking occurs), the average CF of the Dep
cases should be significantly lower than the average CF of the No Dep cases. The statistical comparison was not significant in any of the conditions
(spontaneous, excitatory, single [black] and two-tone [gray] stimulations in the low- [LF] and high-frequency [HF] inhibitory/suppressive response
regions) with all pw0:26 (Wilcoxon rank sum test for different medians of two groups).
doi:10.1371/journal.pone.0007014.g007
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This can be explained, assuming that all potentials, APs and iPs,

are more likely to be emitted during stimulation than during silent

periods. Note that low rates of iPs inside RefWin correlate

extraordinarily well with low overall rates. Hence, the recordings

with few or no iPs in RefWin/CritWin were correctly judged as No

Dep since neither dependent nor independent iPs occurred in

relevant numbers in the whole recording.

Relation of SNRTP and iP rate consistent with the IAP results
Finally, we compare the SNR of the trigger potential (SNRTP)

to the rate of iPs in the whole recording (Figure 8C1–3).

Recordings with highest SNRTP should provide the best

conditions for detecting failures of transmission, since then TPs

and their isolated counterparts should be most easily detectable.

For the AVCN (blue circles and pluses), many recordings for all

three conditions exhibited high SNRTP and considerable rates of

iPs, a considerable percentage of which were judged as dependent

(blue pluses). In the MNTB (red circles and pluses), recordings

with high SNRTP typically had very low rates of iPs. For both

AVCN and MNTB the larger rate of iPs at low SNRTP are most

probably contributed by triggering baseline fluctuations of similar

size as the TP rather than triggering iPs.

Discussion

The present study investigated the reliability of transmission at

the giant synapses of Held in vivo using a novel statistical method.

Figure 8. Statistics and correlations for the number of iPs and different iP rates. (A1–3) #iPs in the two windows (RefWin,CritWin) for all
recording conditions. In the AVCN iPs are generally more abundant, reflected in higher #iPs in the windows. In the MNTB the #iPs in the windows
rises in the excited condition, probably due to activation of neighboring units. In the inh./sup. condition the #iPs in the windows is again reduced,
probably due to correlated inh./sup. areas for neighboring units. (B1–3) The iP rate in RefWin equals or exceeds the overall iP rate, thus confirming
that the IAP is not biased by considering only iPs close to the CWs. Especially for the MNTB, low iP rates in RefWin entail similarly low overall iP rates,
hence correspond to very low #iPs rel. to #CWs. (C1–3) A comparison of SNRTP and the overall iP rate between the two nuclei shows that for the
best SNRTP, in the AVCN the overall iP rate often remains substantial, whereas it drops to vanishingly low values in the MNTB. This indicates that in
the MNTB virtually no iPs remain under conditions where dependent iPs should be best detectable.
doi:10.1371/journal.pone.0007014.g008
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Our analysis provides further evidence consistent with previous

findings on signal transmission at the endbulbs of Held (AVCN)

while indicating the need for reconsideration in the case of the

calyces of Held (MNTB). In the MNTB only few recordings

contained dependent iPs, thus rendering isolated prepotentials, i.e.

failures of signal transmission, a rare event. By contrast, in the

AVCN the majority of recordings contained dependent iPs

suggesting failures of AP transmission, predominantly during the

inhibitory/suppressive response conditions.

The different results at the two synapses of Held emphasize the

necessity for systematically assessing the origin of failure

candidates before assuming a common origin with the complex

waveforms. The decision as to whether potentials in a recording

are dependent or not has to be based on extended stretches of the

recording. Only a statistical approach can provide a reliable

decision based on the probability with which the events occur in

relation to the complex waveforms.

Origin of dependent iPs
In principle, a number of different constellations can lead to the

observed dependence between iPs and complex waveforms. This

ambiguity necessitated the present cautious choice of terminology,

i.e. dependent iPs rather than failures. Based on the current

biological understanding of the investigated nuclei, we will argue

below that dependent iPs do most likely correspond to failures of

synaptic transmission. Since dependent iPs were rare in the

MNTB, we will focus on the AVCN.

Aside from failures, a common cause can lead to dependence

between iPs and the complex waveforms of a given unit: Most

directly, dependence would be induced, if the iPs originate from a

source which receives input via the same auditory nerve fiber. In

this case, the second source would be another spherical bushy cell.

Alternatively, dependence would also be present, if the given unit

and the iPs are phase-locked to the same stimulus, which would

also synchronize their refractory periods. Here, the second source

could either be another spherical bushy cell or another auditory

nerve fiber.

The tuning of the iPs has been shown to be V-shaped and

monotonic, whereas the tuning of the complex waveforms is often

non-monotonic at the CF [12]. This renders other spherical bushy

cells unlikely as iP sources and leaves another, phase-locked

auditory nerve fiber as a possible source. However, the present

results are not consistent with the hypothesis that phase-locking

plays a major role in IAP classification: (i) Classification into Dep

and No Dep was not CF dependent (as detailed in Results). (ii) The

duration of CritWin was not correlated with the period

corresponding to the unit’s CF. This would have been expected

if it arose from phase-locking. (iii) The percentage of Dep results in

the excited condition was lower than for spontaneous recordings,

contrary to the expectation that during excitation stronger phase-

locking would have increased the number of Dep cases.

Further lines of evidence based on the waveforms have been

provided [33], but may not be necessary. Taking these arguments

together with previous accounts for failures in the AVCN (see

below) provides convincing evidence for assuming that dependent

iP constitute failures at the endbulbs of Held in vivo.

Endbulbs of Held - AVCN
The size of the endbulbs of Held and their involvement in

auditory processing at high temporal precision rendered them a

possible candidate for reliable signal transmission. However,

consistent with the present study, several earlier studies have

demonstrated that failures of transmission occur both in vitro ([15],

especially for stimulation rates exceeding 100 Hz) and in vivo

[11,12]. While synaptic depression has been suggested as a major

cause [15], glycinergic and GABAergic inhibition could also

induce failures. Both anatomical [34–38] and physiological

[12,39–42] findings provided evidence for a role of these inhibitory

transmitters in modulating synaptic transmission, e.g. in response

to certain stimulus configurations. The present results add to the

evidence for the presence of inhibition, since synaptic depression

does not predict an increase in transmission failures in the case of

sound evoked suppression/inhibition. To evaluate the relevance of

inhibition, the possibility of interaction with different anesthetics

would have to be checked.

Quantitatively, the present percentage of recordings showing

failures (40–70%, depending on recording condition) differs from

both the estimates in [11] (20–25%) and [12] (50–100%, 21/42

units with complex waveforms and 21/21 units studied with

waveform analysis). While the estimation method is not clearly

stated in [11], the reduction in comparison to [12] can be

explained by the present distinction of dependent from indepen-

dent iPs.

Functionally, the occurrence of failures of transmission does not

necessarily imply imprecision, but can rather be a means of

temporal sharpening. Phase-locking to pure tones has been shown

to improve from auditory nerve fibers to the spherical bushy cells

[28,43], which are connected via the endbulbs of Held. Different

mechanisms could contribute to this improvement: First, precisely

timed inhibition could prevent imprecise spikes. Second, since

usually multiple endbulbs converge on a single spherical bushy cell

[3,4,44], the improvement in phase-locking could be due to the

detection of coincident inputs [45,46]. Interestingly, for coinci-

dences to become relevant, synaptic depression is a necessary

ingredient, especially after the temporally more precise onset

response. In both mechanisms, certain, probably poorly phase-

locked endbulb inputs will not elicit postsynaptic spikes thus

leading to failures.

Calyx of Held - MNTB
Based on its elaborate morphology and a number of in vitro

studies, the calyx of Held was long thought to provide reliable

signal transmission [5,17,47]. Similar to the AVCN, synaptic

depression was shown to reduce the safety factor, yet leaving AP

transmission intact, especially after hearing onset [17,18]. Though

principal cells of the MNTB had earlier been shown to be

contacted by inhibitory synaptic terminals [48–51], the sensitivity

of MNTB principal cells to glycine and GABA has only recently

been demonstrated in vitro [52–54].

Along these lines, failures of transmission at the calyx of Held

were found in only three studies. In the cat failures were described

in vivo under electrical stimulation at high frequencies (§500 Hz,

[13]). Yet, for sound evoked responses tested, these authors

‘‘searched extensively, but did not find inhibition which blocked

C2 following C1’’ (p. 329, C1: presynaptic, C2: postsynaptic). The

waveform analysis conducted in a later study in the gerbil [14]

showed failures in sound evoked responses for 35% (30/85) of the

units. In two recent in vitro studies failures occurred during high-

frequency electrical stimulation in synapses after prolonged

conditioning with high firing rates (gerbil: [19], mouse: [20]).

Only limited agreement exists between these reports and the

present study, as transmission failures were observed only rarely

during spontaneous responses and in only a small fraction of

recordings after prolonged acoustic stimulation.

Focusing on acoustic stimulation in vivo, the present findings

qualitatively mirror the observations in [13] and [21]. The

difference to [14] results from the IAP criterion, which classified

most iPs as independent. The reason for failures following electrical
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stimulation, however, remains elusive, especially as average firing

rates during acoustic stimulation usually match rates used in

electrical stimulation (§300 Hz). Since Guinan et al. [13] observed

this discrepancy between electrical and acoustical stimulation in

very similar preparations, differences due to recording and analysis

techniques are unlikely for this study in particular.

However, it has recently been proposed that activity induces

increases in the level of nitric oxide which in turn reduce the

excitability of MNTB neurons and can lead to failures of signal

transmission [20] (in vivo after 10–30 min of 80 dB stimulation at

CF under fentanyl anesthesia). Since ketamine, the anesthetic

commonly used in in vivo experiments, interferes with the

production of nitric oxide one might propose that failures are

more commonly observed in awake animals which are exposed to

extended periods of acoustic stimulation. Until further exploration

of this issue we would conclude that failures of transmission are

rare at the calyx of Held at least under the kind of acoustic

stimulation, anesthesia, and species investigated in the present and

the former in vivo studies [13,21]. If failures prove to be rare at the

calyx of Held, the MNTB’s function might actually be the

previously proposed ‘‘sign inversion’’.

Independence assessment of potentials
Although IAP was designed merely as an automated and

statistically grounded procedure for spike-sorting and temporally

comparing certain potentials, some discussion concerning its

underlying assumptions, performance limits, and dependence on

the shape of CW are provided.
Assumptions. IAP relies on only few assumptions:

N Potentials transmitted via the same fiber are assumed to obey a

refractory period. The duration of the refractory period was

not critical for the performance of IAP and inter-spike intervals

v0.75 ms were not observed.

N AP waveforms are assumed not to exhibit systematic variations

in shape or size over the recording period (e.g. caused by the

animals breathing, electrode dislocation, etc.). This require-

ment was checked visually for each recording prior to analysis.

N Dependent iPs are assumed to be of similar size as their

corresponding TPs in CWs. This assumption bears the greatest

biological relevance since its validity is determined by the cause

of the dependent iPs. In the MNTB sizes are known to be

similar at least under electrical stimulation [13,19,24]. In the

AVCN many (including the present) studies argue in favor of

this assumption. Obviously, further failures of a different kind,

violating the size assumption, cannot be excluded, yet we have

re-run the analysis with iPs triggered at only 50–70% of the TP

height with qualitatively identical results (not shown).

N Potentials from different sources are assumed to not be closely

correlated in time. Phase-locking could have invalidated this

assumption, but apparently did not play a significant role (see

Results). Note, however, that this question only has a minor

influence for MNTB data, as the CFs predominantly lie above

2.5 kHz [29].

Performance limits. Aside from a small number of CWs,

IAP performance is mainly limited by the ratio between dependent

and independent iPs/noise. If the rate of dependent iPs is far lower

than the rate of independent iPs, the reduction in CritWin will only

become significant after very long recording periods containing

large numbers of CWs. Yet, it is debatable whether very low failure

rates are of interest for the study of transmission reliability.

Shape of complex waveform. The shape differences of the

CWs recorded in AVCN and MNTB could bias the results

obtained in each nucleus (Figure 1). The CWs mainly differ in two

respects: Firstly, in the AVCN two components precede the

postsynaptic AP, whereas only one in the MNTB. Secondly, in the

AVCN the larger component (A, used as TP) is closer to the

postsynaptic AP (&0.1 ms) than C1 is to the postsynaptic

component in the MNTB (&0.5 ms). Using simulations based

on each CW separately we could confirm that the classification by

IAP remains valid independent of the CW (data not shown).

Concerning the second difference no bias would be expected since

the temporal separation between A/C1 and the postsynaptic does

not influence the histogram before A/C1. The first difference

(additional component P in the AVCN) could have had an

influence on the histogram since it could have contributed to the

histogram in CritWin, thus rendering Dep classification less likely.

As mentioned in Methods we accounted for this effect by

subtracting the average CW from each CW. Also, only a small

effect would be expected since P’s height is usually only about

5{10% of A’s height.
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